If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.125x^2+16x=0
a = 0.125; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·0.125·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*0.125}=\frac{-32}{0.25} =-128 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*0.125}=\frac{0}{0.25} =0 $
| 5u+23=3 | | 0=4t^2+16 | | -3x+21=-81 | | 2w-10=w+14 | | 30-2y=y+9 | | 9a+7a=19-2a | | 2(x+3)-4=2(2x-6 | | 2x-5=3(.5x+4) | | 32/12=8/x | | 8/x=32/12 | | 98-4x=-28 | | 4+p-5=-2 | | 6x-1=‐13 | | y+8+-2=6 | | 2/9m+13=-8 | | 2-2p=2p | | 1=2-2p | | 1p-1p=2p | | 2–2p=2p | | 2(1–p)=2p | | 4.2x=3x+6 | | 1p-1p=2-2p | | 7x+10=8x-5 | | 2(x–1)=-‐6 | | 1p+1(1–p)=0p+2(1–p) | | 19^x=361 | | 9a+7a=19–2a | | h÷4=7 | | s−8=17 | | k−4=14 | | 49=p/8+41 | | -26=g/8+-31 |